Cho biểu thức \(A=\frac{\left(\sqrt{x}-3\right)^2}{x-4}\). So sánh \(A\) và \(\frac{1}{A}\) .
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
rút gọn biểu thức:
A=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{2}+1}\right).\frac{\left(1-x\right)^2}{2}\)
ai trả lời đúng yêu lun ý!!!
Cho biểu thức:
\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\) với a > 0; \(a\ne1\) và \(a\ne4\)
Rút gọn biểu thức P
Rút gọn biểu thức : A=\(\frac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(x+1\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với -1\(\le\) x \(\le\) 1
Bài 1 Cho biểu thức sau
P=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\) :\(\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
a,Rút gọn
b,Tìm c để P>2
c,Tìm GTNN \(\sqrt{P}\)
cho biểu thức:\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x+2}}{x+\sqrt{x}+1}\right)\left(\frac{1-x^2}{\sqrt{2}}\right)^2\) ( với \(x\ge0;x\ne1\) ). Rút gọn P
cho bt p=\(\left(\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\right)\)
a) rg p
b) tìm x để \(\frac{1}{p}-\frac{\sqrt{x}+1}{8}>\)hoặc bằng 1
a) gpt \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
b) ghpt \(\left\{\begin{matrix}2\sqrt{x}\left(1+\frac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\frac{1}{x+y}\right)=1\end{matrix}\right.\)