a: Thay x=16 vào A, ta được:
\(A=\dfrac{4}{4+2}=\dfrac{4}{6}=\dfrac{2}{3}\)
b: \(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c: \(\dfrac{2A}{B}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\sqrt{x}-4}{\sqrt{x}+2}\)
Để 2A/B là số nguyên thì \(2\sqrt{x}-4⋮\sqrt{x}+2\)
=>\(2\sqrt{x}+4-8⋮\sqrt{x}+2\)
=>\(-8⋮\sqrt{x}+2\)
=>\(\sqrt{x}+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(\sqrt{x}+2\in\left\{2;4;8\right\}\)
=>\(\sqrt{x}\in\left\{0;2;6\right\}\)
=>\(x\in\left\{0;4;36\right\}\)
Kết hợp ĐKXĐ, ta được: x=36