cho a=\(\sqrt[3]{\sqrt{5}+2}+\sqrt[3]{1-\sqrt{11}}\)
chưng minh \(a^9-6a^6+282a^3=8\)
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
Toán số 9, liên quan đến dạng căn. Các bạn giúp mình nhé, xin cảm ơn rất nhiều. :)
1) \(\left(\sqrt{3-2\sqrt{\sqrt{3}-1}}+\frac{\sqrt{3}-1}{\sqrt{2}}\right)\sqrt{\sqrt{3}-1}\)
2) \(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
3) \(\frac{\sqrt{10+6\sqrt{2}}-\sqrt{10-6\sqrt{2}}}{\sqrt{5-\sqrt{7}}}-\sqrt{9+2\sqrt{20}}\)
4) \(\frac{\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}}{\sqrt{5+\sqrt{22}}}-\frac{\sqrt{6-\sqrt{24}}}{\sqrt{3+\sqrt{3}}-\sqrt{3-\sqrt{3}}}\)
5) \(\sqrt{5+2\sqrt{14\sqrt{5}-26}}-\sqrt{4\sqrt{5}-1+\sqrt{80-8\sqrt{5}}}\)
6) \(\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}-\sqrt{3-2\sqrt{2}}\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Cho \(x=\sqrt{6+2\sqrt{2}.\left(\sqrt{\frac{5}{2}-\sqrt{6}+\sqrt{\left(3\sqrt{a}+1\right)\left(2a-2\right)-\frac{6a^2+6\sqrt{a}-8a-4a\sqrt{a}}{\sqrt{a}-1}+8}}\right)}\) với a là số thực không âm
\(y=\frac{\frac{x-2}{x}+\frac{1}{x-2}}{12-8\sqrt{5}}.\left(-16\right)\)
So sánh x và y
Rút gọn bt
\(a,A=\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(b,C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(c,\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(d,\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)