cho tập \(Â=\left\{x\in R|2x-1< 5\right\},B=\left\{x\in Z|-1\le x\le5\right\}\)
và C là tập giá trị hàm: y=x^2-2x+m trên \([-1;1)\)
a, tìm \(A\cap B\)
b, tìm m để \(C\subset A\)
Cho 2 tập hợp \(M=\left\{x\in R|x\le4\right\}\)và \(N=[m+1;10)\), với m là tham số. Tìm giá trị của m để M giao N là một đoạn có độ dài bằng 10.
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
Cho `A={x in R` | `|x-m|=25} ; B={x in R` | `|x| >= 2020}` . Có bao nhiêu giá trị nguyên m thì \(A\cap B=\varnothing\)
Tìm tất cả các giá trị của tham số m để
\(\frac{x^2-4x-4}{x^2-2\left(m-1\right)x+16}\le2\) với mọi \(x\in R\)
Cho \(A=\left[m-1;\dfrac{m+3}{2}\right]\); \(B=\left(-\infty;-3\right)\cup[3;+\infty)\)
Tìm m để \(A\cap B\ne\varnothing\)
Tìm m để \(\left(m+1\right)x^2+mx+m< 0,\forall x\in R\)