Quá dễ luôn thế mà cũng hỏi hehe....
Áp dụng BĐT Cauchy \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\frac{ca}{b}}=2\sqrt{c^2}=2c\)
Tương tự: \(\frac{ca}{b}+\frac{ab}{c}\ge2a;\frac{ab}{c}+\frac{bc}{a}\ge2b\)
nên \(2\left(\frac{ca}{b}+\frac{ab}{c}+\frac{bc}{a}\right)\ge2\left(a+b+c\right)=2\Rightarrow\)\(A\ge2\) dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)