a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Vì BD là phân giác nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{BC}{DC}=\dfrac{AB}{AD}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{BC}{DC}=\dfrac{AB}{AD}=\dfrac{BC+AB}{DC+AD}=\dfrac{5+3}{4}=2\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}cm\)
b, Ta có \(S_{ABD}=\dfrac{1}{2}.AB.AD=\dfrac{1}{2}.3.\dfrac{3}{2}=\dfrac{9}{4}cm^2\)
\(S_{DBC}=\dfrac{1}{2}.AB.DC=\dfrac{1}{2}.3.\dfrac{5}{2}=\dfrac{15}{4}cm^2\)
suy ra \(\dfrac{S_{ABD}}{S_{DBC}}=\dfrac{AB}{BC}=\dfrac{\dfrac{9}{4}}{\dfrac{15}{4}}=\dfrac{3}{5}\)(đúng)
Vậy ta có đpcm