Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Doraemon

Cho ∆ABC vuông tại A, đường cao AH, AB = 3cm, BC = 6cm 1. Tính AH và chu vi của tam giác ABC 2. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC a) Tính độ dài AH và chứng minh EF = AH b) Chứng minh EA.EB + AF.FC = EF²

Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 19:28

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+9=36\)

=>\(AC^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Chu vi tam giác ABC là:

\(3+3\sqrt{3}+6=9+3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

2: 

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>EF=AH

b: Xét ΔHAB vuông tại H có HE là đường cao

nên \(EA\cdot EB=HE^2\)

ΔHAC vuông tại H có HF là đường cao

nên \(FA\cdot FC=HF^2\)

\(EA\cdot EB+FA\cdot FC\)

\(=HE^2+HF^2=EF^2\)


Các câu hỏi tương tự
Mi Mi Lê Hoàng
Xem chi tiết
Nguyễn Thị Nhung
Xem chi tiết
Đinh Công Việt
Xem chi tiết
Nguyễn Quân
Xem chi tiết
Trần Minh Thư
Xem chi tiết
thang pham van
Xem chi tiết
Maii Tômm (Libra)
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Triệu Thảo Oanh
Xem chi tiết