a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM và DA=DM
b: BD=căn 16^2+12^2=20cm
c: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBI chung
=>ΔBMI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM và DA=DM
b: BD=căn 16^2+12^2=20cm
c: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBI chung
=>ΔBMI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
Cho Tam giác ABC vuông tại A ( AB < AC ). Kẻ tia phân giác của ABC cắt BC tại D. Kẻ DM vuông góc với BC tại M.
a) Chứng minh Tam giác DAB = tam giác DMB.
b) Chứng minh BD vuông góc với AM
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB . Chứng minh AM // KC
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M, vẽ MD vuông góc với BC tại D. a) Chứng minh BA = BD b) Gọi E là giao điểm của hai đường thẳng AB và DM. Chứng minh ∆ABC = ∆DBE.
Cho tam giác ABC vuông tại A có AB < AC, kẻ đường phân giác BD của góc ABC (D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB = tam giác DMB.
b) Chứng minh BD là đường trung trực của AM.
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc KC và tam giác KDC cân tại D.
d) Gọi E là trung điểm của BC, qua N kẻ đường thảng song song với BC, đường thẳng này cắt AB tại P. CHứng minh ba đường CP, KE, BN đồng quy.
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của ABC ( D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh AD<DC
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB , đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc với KC và tam giác KDC cân tại B
Cho tam giác ABC vuông tại A có góc AC = 12cm và cạnh AB = 16cm , tia phân giác của góc B cắt AC tại D KẺ DE vuông góc với BC tại R a) tính độ dài cạnh BC b) chứng minh ABD=EBD từ đó suy ra DA=DE c) Gọi K là giao điểm của BA và ED chứng minh tam giác BCK cân
Câu 1:Cho ΔABC vuông tại A, đường trung tuyến CM.a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC. Chứng minh rằng ΔMAC = ΔMBD và AC = BD.c) Chứng minh rằng AC + BC > 2CM.d) Gọi K là điểm trên đoạn thẳng AM sao cho AM32AK=. Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID
Câu 2;Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm.a) Tính độ dài AC.b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và BDAE⊥.c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC.d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
Cho tam giác ABC vuông tại A có AB<AC, đường phân giác BD của góc ABC (D thuộc AC). Kẻ DM vuông góc với BC tại M.
a, Chứng minh rằng: ΔDAB= ΔDMB
b, Chứng minh BD là đường trung trực của AM
c, Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc với KC và ΔKBC cân tại B
Cho tam giác ABC cân tại A ( Góc A là góc nhọn ) . VẼ AD vuông góc với BC tại D , DM vuông góc với AB tại M , DN vuông góc với AC tại N
a ) CM : tam giác DAB = tam giác DAC
b) CM : tam giác DMN cân
c) Gọi E là giao điểm của MD và AC , F là giao điểm của AB và ND . Chứng minh rằng BC // EF
Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh DABD = DEBD.
b) Gọi M là giao điểm của AB và DE. Chứng minh DM = DC.
c) Chứng minh rằng AD + EC > DM