Cho a , b , c là 3 cạnh của 1 tam giác và \(a+b+c=6\)
Chứng minh rằng : \(3\left(a^2+b^2+c^2\right)+2abc\ge52\)
Cho các số thực a , b , c > 0 thỏa mãn \(a+b+c=3\)
Chứng minh rằng \(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge3\)
Cho số dương a , b , c thỏa mãn \(a+b+c=3\)
Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a , b , c dương thỏa mãn \(a+b+c\le\sqrt{3}\)
Chứng minh rằng \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\)
a) Cho a + b +c = 2015 và $$
Tính S = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
b) cho 2 số a,b thỏa mãn điều kiện a+b=1.Chứng minh a3 +b3 +ab lớn hơn hoặc bằng \(\frac{1}{2}\)
cho a,b,c là ba độ dài của tam giác có chu vi bằng 2
Chứng minh a^2+b^2+c^2+2abc<2
Cho a,b,c là ba cạnh của tam giác . Chứng minh bất đẳng thức :
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\).
cho ba số hữu tỉ a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\). Chứng minh rằng: A=\(\sqrt{a^2+b^2+c^2}\) là số hữn tỉ.
Cho a,b,c là các số dương thỏa mãn :a2 +2b2 < 3c2.Chứng minh : \(\frac{1}{a}\)+\(\frac{2}{b}\)>\(\frac{3}{c}\)