Cho 3 số dương a;b;c. CMR:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)
Cho hai số thực a,b thay đổi thỏa mãn điều kiện\(a+b\ge1\) và \(a>0\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{8a^2+b}{4a}+b^2\)
Cho a,b,c là các số dương thỏa mãn điều kiện: \(5a^2+2abc+4b^2+3c^2=60\) Tìm GTLN của biểu thức: \(A=a+b+c\)
Cho a, b, c > 0 và a + 2b + 3c ≥ 20.
Tìm GTNN của \(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Cho a,b,c thỏa mãn a\( \geq 0\), b\( \geq 0\), c\( \geq 1\) và a+b+c=2. Tìm GTLN của T= (6-a2-b2-c2)(2-abc)
Cho a, b,c,d thoả:
\(\begin{cases}a+b+c+d=3\\a^2+b^2+c^2+d^2=3\end{cases}\)
Tìm a,b,c sao cho d đạt GTLN
mọi người giúp mk vs ạ
Cho a, b, c là các số dương thỏa abc=1. Chứng minh:
\(\frac{1}{a^2+2b^{ }^2+3}+\frac{1}{b^{ }^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cho a;b;c là các số thực dương thỏa mãn abc = 1. Tìm GTLN của biểu thức:
\(T=\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
cho a,,c là các số lớn hơn 1 . tìm min của bt \(A=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
1 Tính
a) \(\sqrt{0.9\times0.16\times0.4}\)
b) \(\sqrt{0,0016}\)
c)\(\frac{\sqrt{72}}{\sqrt{2}}\)
d) \(\frac{\sqrt{2}}{\sqrt{288}}\)
2 Rút gọn
a) \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}\left(a< 0\right)\)
b) \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}\left(a>1\right)\)
c) \(\frac{\sqrt{243a}}{\sqrt{3a}}\left(a>0\right)\)
d) \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}\left(a\ne0,b\ne0\right)\)