ab=6 suy ra a=6/b
a+b=b+6/b=(b^2+6)/b=5
suy ra b^2+6=5b
b^2-5b+6=0
suy ra (b-2)(b-3)=0
suy ra b=2; b=3
suy ra a=3; a=2
suy ra a^5+b^5=275
ab=6 suy ra a=6/b
a+b=b+6/b=(b^2+6)/b=5
suy ra b^2+6=5b
b^2-5b+6=0
suy ra (b-2)(b-3)=0
suy ra b=2; b=3
suy ra a=3; a=2
suy ra a^5+b^5=275
Cho biểu thức M= \(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)nhau.với hai số a, b dương khác
a/ Rút gọn M
b/Tính giá trị của M khi a=\(\sqrt{6+2\sqrt{5}}\),b=\(\sqrt{6-2\sqrt{5}}\)
Cho a,b thỏa mãn : a+b≥2. Chứng minh rằng:phương trình (x2+2a2bx+b5).(x2+2ab2x+a5)=0 luôn có nghiệm.
Cho hai số thực a , b thỏa điều kiện ab = 1, a +b ¹ 0 . Tính giá trị của biểu thức:
P = 1 ( a + b ) 3 ( 1 a 3 + 1 b 3 ) + 3 ( a + b ) 4 ( 1 a 2 + 1 b 2 ) + 6 ( a + b ) 5 ( 1 a + 1 b )
Phân tích 210720202021 thành tổng 3 số tự nhiên a, b, c. Tìm chữ số tận cùng của S=a5+b5+c5
GIÚP VỚI
Cho \(B=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a. Rút gọn B
b. Tính giá trị của B khi \(a=6+2\sqrt{5}\)
c. So sanhs B với -1
Cho biểu thức: \(B=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a) Rút gon biểu thức
b) Tính giá trị của B nếu a=\(6+2\sqrt{5}\)
c) So sánh B với -1
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
giải giúp mìnhh
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|