Lời giải:
Ta có: $a^2+b^2-2ab=(a-b)^2\geq 0$ với mọi $a,b$
$\Leftrightarrow ab\leq \frac{a^2+b^2}{2}$
Do đó: $a^2+b^2=4+ab\leq 4+\frac{a^2+b^2}{2}\Rightarrow a^2+b^2\leq 8(*)$
Mặt khác:
Từ đkđb suy ra $2(a^2+b^2)=2(4+ab)$
$\Leftrightarrow 3(a^2+b^2)=8+(a+b)^2\geq 8$
$\Rightarrow a^2+b^2\geq \frac{8}{3}(**)$
Từ $(*); (**)\Rightarrow$ đpcm.