a3-3ab2=2 và b3-3a2b=-11
=>(a3-3ab2)2=4 và (b3-3a2b)=121
=>a6-6a4b2+9a2b4=4 và b6-6a2b4+9a4b2=121
=>a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=4+121
=>a6+3a4b2+3a2b4+b6=125
=>(a2+b2)3=125
=>a2+b2=5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a3-3ab2=2 và b3-3a2b=-11
=>(a3-3ab2)2=4 và (b3-3a2b)=121
=>a6-6a4b2+9a2b4=4 và b6-6a2b4+9a4b2=121
=>a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=4+121
=>a6+3a4b2+3a2b4+b6=125
=>(a2+b2)3=125
=>a2+b2=5
Cho a3 - 3ab2 = 2 ; b3 - 3a2b = -11.
Tính : M = a2 + b2.
chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
Cho a3-3ab2=5 ; b3-3a2b=10
Tính S = 20/6a2+20/6b2
chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Rút gọn: M= (a2+b2+2)3-(a2+b2-2)3-12(a2+b2)2
Cho a + b =1. Hãy tính giá trị của biểu thức N= a3+b3+3ab
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < b 2 và a 3 < b 3
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )