A.2=4/1.5+6/5.11+...+12/29.41
A.2=1-1/5+1/5-1/11+...+1/29-1/41
A.2=1-1/41
A.2=40/41
A=20/41
B.3=3/1.4+6/4.10+...+12/29.31
B.3=1-1/4+1/4-1/10+...+1/29-1/31
B.3=1-1/31
B.3=30/31
B=10/31
Vì 20/41.10/31 nên A>B
\(A=\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\)
\(\Rightarrow2A=\dfrac{4}{1.5}+\dfrac{6}{5.11}+\dfrac{8}{11.19}+\dfrac{10}{19.29}+\dfrac{12}{29.41}\)
\(\Rightarrow2A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{41}\)
\(\Rightarrow2A=1-\dfrac{1}{41}=\dfrac{40}{41}\)
\(\Rightarrow A=\dfrac{40}{41}:2=\dfrac{20}{41}\)(1)
\(B=\dfrac{1}{1.4}+\dfrac{2}{4.10}+\dfrac{3}{10.19}+\dfrac{4}{19.31}\)
\(\Rightarrow3B=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}\)
\(\Rightarrow3B=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}\)
\(\Rightarrow3B=\dfrac{1}{1}-\dfrac{1}{31}=\dfrac{30}{31}\)
\(\Rightarrow B=\dfrac{30}{31}:3=\dfrac{10}{31}\)
\(\Rightarrow B=\dfrac{2}{2}.\dfrac{10}{31}=\dfrac{20}{62}\)
+)Ta có:\(\dfrac{20}{62}< \dfrac{20}{41}\Rightarrow B< A\)
Hay A>B(ĐPCM)
Chúc bn học tốt
Giải:
\(A=\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\)
\(2A=\dfrac{4}{1.5}+\dfrac{6}{5.11}+\dfrac{8}{11.19}+\dfrac{10}{19.29}+\dfrac{12}{29.41}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{41}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{41}\)
\(2A=\dfrac{40}{41}\)
\(A=\dfrac{40}{41}:2\)
\(A=\dfrac{20}{41}\)
\(B=\dfrac{1}{1.4}+\dfrac{2}{4.10}+\dfrac{3}{10.19}+\dfrac{4}{19.31}\)
\(3B=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}\)
\(3B=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}\)
\(3B=\dfrac{1}{10}-\dfrac{1}{31}\)
\(3B=\dfrac{21}{310}\)
\(B=\dfrac{21}{310}:3\)
\(B=\dfrac{7}{310}\)
Vì \(\dfrac{20}{41}>\dfrac{7}{310}\) nên A>B