a) Có: \(\dfrac{a}{b}-\dfrac{a+c}{b+c}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}-\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ba+ac-ba-bc}{b\left(b+c\right)}=\dfrac{ac-bc}{b\left(b+c\right)}< 0\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
b) Ta có:
\(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)
Lại có: \(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)Từ (1) và (2) ⇒ 1<A<2
⇒đpcm