Ta có:
`a/b < c/d -> ad < bc`
Ta có:
`(2002a+c)/(2002b+d)<c/d`
`=>(2002a + c)d < c(2002b + d)`
`=> 2002ad + cd < 2002bc + cd`
`=> 200ad < 2002bc`
`=> ad < bc ( đpcm ` như giả thiết `)`
Vậy:`(2002a+c)/(2002b+d)<c/d`
Ta có:
`a/b < c/d -> ad < bc`
Ta có:
`(2002a+c)/(2002b+d)<c/d`
`=>(2002a + c)d < c(2002b + d)`
`=> 2002ad + cd < 2002bc + cd`
`=> 200ad < 2002bc`
`=> ad < bc ( đpcm ` như giả thiết `)`
Vậy:`(2002a+c)/(2002b+d)<c/d`
Cho a; b; c; d ∈ N* thỏa mãn \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng: 2018a+c / 2018b+d < \(\dfrac{c}{d}\)
cho a,b,c,d\(\in\)N* thỏa mãn \(\frac{a}{b}\)<\(\frac{c}{d}\).
Chứng tỏ rằng :\(\frac{2002a+c}{2002b+d}\)<\(\frac{c}{d}\)
Giá trị x thoả mãn \(2\dfrac{1}{4}x - 6\dfrac{3}{5} = 3,75 \) là :
A. \(\dfrac{4}{5}\) B. \(\dfrac{23}{5}\)
C.\(\dfrac{13}{5}\) D. \(\dfrac{1}{7}\)
Biết \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\)
Cho dãy tỉ số bằng nhau \(\dfrac{a}{a+b+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\) Tính giá trị của biểu thức M=\(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}-\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
cho\(\dfrac{a}{b}=\)\(\dfrac{c}{d}\) CMR: \(\dfrac{a+c}{b+d}\)=\(\dfrac{a-c}{b-d}\)
Cho 3 số a, b, c, dương. M = \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) . Chứng tỏ rằng M không là số nguyên
BT: Cho a, b, c là các số thực dương thỏa mãn a ≥ b ≥ \(\dfrac{a+c}{2}\).
Chứng minh rằng :
\(\dfrac{a}{a+\sqrt{bc}}+\dfrac{b}{b+\sqrt{ca}}+\dfrac{c}{c+\sqrt{ab}}\) ≥ \(\dfrac{3}{2}\).
CMR các phân số sau là phân số tối giản
a) \(A=\dfrac{n+1}{n+2}\)
b) \(B=\dfrac{n+1}{3n+4}\)
c) \(C=\dfrac{3n+2}{5n+3}\)
d) \(D=\dfrac{12n+1}{30n+2}\)
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)