Có \(\dfrac{a}{b}=\dfrac{c}{d}< =>ad=bc\)
Xét \(\dfrac{a+c}{b+d}-\dfrac{a-c}{b-d}\)
= \(\dfrac{\left(a+c\right)\left(b-d\right)-\left(b+d\right)\left(a-c\right)}{\left(b+d\right)\left(b-d\right)}\)
= \(\dfrac{ab-ad+bc-cd-ab+bc-da+cd}{\left(b+d\right)\left(b-d\right)}\)
= 0
<=> \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)