Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR : a^2b + b^2c + c^2a >= 9a^2b^2c^2/(1+2a^2b^2c^2
Cho 0<a,b,c<1.CMR:
2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
a,b,c>0.CMR a^2/(2a+b)(2a+c)+b^2/(2b+c)(2b+a)+c^2/(2c+a)(2c+b) >1/3
a,b,c>0: a+b+c=3. Chứng minh:
\(a^2b+b^2c+c^2a>=\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Cho 0< a,b,c<1. Chứng minh rằng \(2a^3+2b^{^3}+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a,b,c<1. Chứng minh rằng;
\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a,b,c<1.Chứng minh rằng:\(2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a\)