`# \text {DNamNgV}`
\(A=1+2+2^2+...+2^{2021}\text{ và }B=2^{2022}\)
Ta có:
\(A=1+2+2^2+...+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2022}\\\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow A=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\\ \Rightarrow A=2^{2022}-1\)
Vì \(2^{2022}-1< 2^{2022}\)
\(\Rightarrow A< B.\)