Xem nó là phương trình ẩn a rồi dùng \(\Delta\)là ra
Câu hỏi của Cuồng Song Joong Ki - Toán lớp 8 (em không chắc đâu nha)
Xem nó là phương trình ẩn a rồi dùng \(\Delta\)là ra
Câu hỏi của Cuồng Song Joong Ki - Toán lớp 8 (em không chắc đâu nha)
1. a) Tìm n∈N để: \(\left(23-n\right)\left(23+n\right)\) là SCP.
b) Tìm 3 số lẻ liên tiếp mà tổng bình phương của chúng là 1 SCP.
2. a) Tìm nghiệm nguyên: \(x^{11}+y^{11}=11z\)
b) Tìm số tự nhiên n thỏa mãn: \(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Cho a, b là các số dương thỏa mãn a + b = 3. CMR
\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{169}{18}\)
Cho \(a,b,c\) là các số dương thỏa mãn \(a^2+b^2+c^2+\left(a+b+c\right)^2\le4.\)
CMR \(\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ca+1}{\left(c+a\right)^2}\ge3\)
Với a,b,c là các số thực dương thỏa mãn ab+bc+ca=1. CMR
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\ge2\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
cho a,b là các số hữu tỉ thỏa mãn \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\).CMR:\(\sqrt{ab+2}\)là số hữu tỉ
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\frac{a}{1+\left(b+c\right)^2}+\frac{b}{1+\left(c+a\right)^2}+\frac{c}{1+\left(a+b\right)^2}\le\frac{3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2+12abc}\)