Cho ∫ 1 3 1 + 1 x 2 d x = a - b + ln c + d e với c nguyên dương và a,b,d,e là các số nguyên tố. Giá trị của biểu thức a+b+c+d+e bằng
A. 10
B. 14
C. 24
D. 17
Cho ∫ 0 ln 3 e x 1 + e x + 1 d x = a - b + ln c + d 9 với a,b,c là các số nguyên dương. Giá trị biểu thức a+b+c+d bằng
A. 21.
B. 15.
C. 23.
D. 27.
Cho ∫ 0 9 16 1 x + 1 + x + 1 d x = a - b ln 2 c với a,b,c là các số nguyên dương và a/c tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Cho ∫ 1 2 1 x x 3 + 1 d x = 1 a ln b c + d với a, b, c, d là các số nguyên dương và b c tối giản. Giá trị của a+b+c+d bằng
A. 12
B. 10
C. 18
D. 15
Cho ∫ 1 2 ( x + 1 ) / ( x 2 + x l n x ) d x =ln(lna+b) với a,b là các số nguyên dương. Giá trị biểu thức ab+a+b bằng
A. 8.
B. 11.
C. 15.
D. 7.
Cho ∫ 1 2 6 x x + 1 + x + 1 d x = a + b - c với a,b,c là các số nguyên dương. Giá trị biểu thức a+b+c bằng
A. 247.
B. 236.
C. 246.
D. 237.
Số thực m nhỏ nhất để phương trình 8 x + 3 x . 4 x + ( 3 x 2 + 1 ) 2 x = ( m 3 - 1 ) x 3 + ( m - 1 ) x có nghiệm dương là a+e lnb, với a,b là các số nguyên. Giá trị của biểu thức a+b bằng
A. 7.
B. 4.
C. 5.
D. 3.
Cho ∫ 0 3 2 + 1 + x d x = a + b c với a,b,c là các số nguyên dương và a b tối giản. Giá trị của biểu thức a+b+c bằng
A. 115.
B. 58.
C. 511.
D. 223.
Biết rằng 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n ( n + 1 ) ( n + 2 ) = a n 2 + b n c n 2 + d n + 16 trong đó a,b,c,d và n là các số nguyên dương.Tính giá trị của biểu thức T=a+b+c+d
A. 45
B.40
C. 38
D. 24