Cho ∫ 1 3 1 + 1 x 2 dx = a - b + ln c + d e với c nguyên dương và a , b , d , e là các số nguyên tố. Giá trị của biểu thức a + b + d + e bằng
A. 10
B. 14
C. 24
D. 17
Cho ∫ 0 ln 3 e x 1 + e x + 1 d x = a - b + ln c + d 9 với a,b,c là các số nguyên dương. Giá trị biểu thức a+b+c+d bằng
A. 21.
B. 15.
C. 23.
D. 27.
Cho ∫ 1 2 1 x x 3 + 1 d x = 1 a ln b c + d với a, b, c, d là các số nguyên dương và b c tối giản. Giá trị của a+b+c+d bằng
A. 12
B. 10
C. 18
D. 15
Cho ∫ 0 9 16 1 x + 1 + x + 1 d x = a - b ln 2 c với a,b,c là các số nguyên dương và a/c tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Cho ∫ 1 4 1 2 x ( x + 2 x + 1 ) 2 dx = a b + 2 ln c d với a, b, c, d là các số nguyên, a b và c d là các phân số tối giản. Giá trị của a + b + c + d bằng :
A. 16
B. 18
C. 25
D. 20
Cho ∫ 1 2 6 x x + 1 + x + 1 d x = a + b - c với a,b,c là các số nguyên dương. Giá trị biểu thức a+b+c bằng
A. 247.
B. 236.
C. 246.
D. 237.
Biết rằng 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n ( n + 1 ) ( n + 2 ) = a n 2 + b n c n 2 + d n + 16 trong đó a,b,c,d và n là các số nguyên dương.Tính giá trị của biểu thức T=a+b+c+d
A. 45
B.40
C. 38
D. 24
Phương trình log 2 x - x 2 - 1 log 3 x + x 2 - 1 = log 6 x - x 2 - 1 có một nghiệm bằng 1 và một nghiệm còn lại dạng x = 1 2 a log b c + a - log b c , trong đó a, b, c là các số nguyên dương và a, c là các số nguyên tố và a > c. Giá trị biểu thức a 2 - 2 b + 3 c bằng
A. 0
B. 3.
C. 6.
D. 4.
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405