Tu gia thuyet suy ra:\(xyz\ge0\Rightarrow x+y+z\le0\)
\(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\le\frac{x+y+z+6}{2}\le\frac{6}{2}=3\)
Dau '=' xay ra khi \(x=y=z=0\)
Tu gia thuyet suy ra:\(xyz\ge0\Rightarrow x+y+z\le0\)
\(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\le\frac{x+y+z+6}{2}\le\frac{6}{2}=3\)
Dau '=' xay ra khi \(x=y=z=0\)
cho x,y,z thuc duong thoa man \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max\(A=x^2+2y\)
Các CTV đâu hết rồi ???Giỏi làm bài này đi , làm đc t xưng = god :]
Với x , y > 0 , x + y + z \(\le\)3/2 . CMR :
\(M=\sqrt[3]{x^3+\frac{1}{y^3}}+\sqrt[3]{y^3+\frac{1}{z^3}}+\sqrt[3]{z^3+\frac{1}{x^3}}\ge\frac{3}{2}\sqrt[3]{65}\)
T cho tụi chúng m đến hết hnay , ko làm đc thì trash
P554.(Mức B)cho x,y,z là các số thực dương,thoả mãn x2+y2+z2=1,chứng minh rằng:\(\frac{1}{1+yz}\le\frac{\sqrt{2}}{x+y+z}.\)mình chưa biết giải.
Cho các số dương x, y, z thỏa mãn xyz = 1. Khi đó giá trị nhỏ nhất của biểu thức
P= \(\frac{\sqrt{1+x^2+y^3}}{xy}\) +\(\frac{\sqrt{1+y^3+z^3}}{yz}\)+\(\frac{\sqrt{1+z^3+x^3}}{zx}\)
cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Cho các số thực x,y,z thỏa mãn \(x^4+y^4+z^4+2x^2y^2z^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2-\sqrt{2}|xyz|\)
cho \(0< x< y\le z\le1\)
và \(3x+2y+z\le4\)
tìm max=\(3x^2+2y^2+z^2\)
1) cho góc x (0 độ \(\le\) x < 90 độ) thỏa mãn \(sinx=\dfrac{4}{5}\) giá trị của \(tanx\) là
2) cho góc x (0 độ \(\le\) x \(\le\) 180 độ) thỏa mãn \(cosx=\dfrac{1}{3}\) giá trị của \(sinx\) là
3) cho \(cosx=\dfrac{1}{2}\) tính \(P=3sin^2x+4cos^2x\)