C nguyên
=>14căn x-4 chia hết cho 2căn x+1
=>2căn x+1 thuộc Ư(9)
=>2căn x+1 thuộc {1;3;9}
=>x thuộc {0;1;16}
C nguyên
=>14căn x-4 chia hết cho 2căn x+1
=>2căn x+1 thuộc Ư(9)
=>2căn x+1 thuộc {1;3;9}
=>x thuộc {0;1;16}
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
P = \(\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
c) Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{1}{P}\)
\(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\) \(\left(x>0;x\ne1\right)\)
Tìm x để \(\dfrac{7}{P}\) nguyên
P = (\(\dfrac{2\sqrt{x}}{\sqrt{x}}-\dfrac{x-4}{\sqrt{x}+2}\)). \(\dfrac{1}{\sqrt{x}-2}\)
a Tìm đkxđ rồi rút gọn P
b Tìm x để P = \(\dfrac{2}{3}\)
c Tính p khi x = 8\(-\)2\(\sqrt{7}\)
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: x > 0). Tìm x nguyên để \(\dfrac{A}{B}< \dfrac{7}{4}\).
\(\dfrac{\sqrt{x}}{\sqrt{x-2}}\)+\(\dfrac{x-3\sqrt{x}+8}{x-7\sqrt{x}+10}\)-\(\dfrac{\sqrt{x-1}}{\sqrt{x-5}}\)
rút gọn
tìm x để biểu thức có nguyên
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: X > 0). Tìm x để biểu thức \(\dfrac{A}{B}< \dfrac{7}{4}\) nguyên.
Đề 7:
Bài 4:
\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right).\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right),\) với \(x\ge0,x\ne9\)
a) Rút gọn P
b) Tìm các giá trị của x để P \(\ge\) \(\dfrac{-1}{2}\)
c) Tìm GTNN của P
Cho biểu thức P=\(\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
a)Rút gọn P.
b)Tính P khi x=3+2\(\sqrt{2}\)
c)Tìm giá trị nguyên của x để P nhận giá trị nguyên.