Câu 39. Cho A= [x € Z/ 3x-6
Hãy liệt kê các phần tử của tập hợp sau :
A = { 3n² - 2n +1 | n ≤ 3 , n ∈ N* }
B = { x ∈ Z | ( 3x + 6 ) ( 2x² - 3x + 1 ) = 0 }
Cho: E={x\(\in\)Z| |x|≤5}, A={x\(\in\)R|x2+3x-4=0}, B={x\(\in\)Z|(x-2)(x+1)(2x2-x-3)=0}
Tìm CE(A\(\cap\)B), CE(A\(\cup\)B)
Cho A= \(\left\{x\in Z|x^2< 4\right\}\) B=\(\left\{x\in Z|\left(5x-3x\right)^2\left(x^2-3x-3\right)=0\right\}\)
a/ Liệt kê A;B
b/ CMR: ( A hợp B) \ ( A giao B) = ( A \ B ) hợp ( B \ A )
Cho E = {x ≤ Z||x| ≤ 5}, F = {x ∈ N ||x| ≤ 5} và
B = {x ∈ Z|(x – 2)(x + 1)(2x2 – x – 3) = 0}. Chứng minh A ⊂ E và B⊂E
Cho A = {x ∈ R | x2+ x – 12 = 0 và 2x2 – 7x + 3 = 0}
B = {x ∈ Z | 3x2 – 13x + 12 =0 hoặc x2 – 3x = 0}
Giải hệ phương trình sau(giải chi tiết)
\(\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)
Cho tập hợp A = (-2; 2); B = { ∀x ∈ Z, | x2 - 3x | = 2}. Số phần tử của tập hợp A ∩ B là
A. 1.
B. 2.
C. 3.
D. Vô số.
Cho x,y,z>0
\(CM:\sqrt{\dfrac{x}{z+3x}}+\sqrt{\dfrac{y}{x+3y}}+\sqrt{\dfrac{z}{y+3z}}\le\dfrac{3}{2}\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in Z\) | \(2x^3-3x^2-5x=0\) }
b) B = { \(x\in Z\) | \(x< \left|3\right|\) }
c) C = { x = 3k; x, \(k\in Z\); -4<x<12 }