a) \(sin\left(60^o+a\right)-sin\left(60^o-a\right)=sina\)
\(\Leftrightarrow2cos\dfrac{60^o+a+60^o-a}{2}.sin\dfrac{60^o+a-60^o+a}{2}=sina\)
\(\Leftrightarrow2cos60^o.sina=sina\)
\(\Leftrightarrow2.\dfrac{1}{2}sina=sina\left(đúng\right)\)
\(\Rightarrow dpcm\)
d) \(VT=\dfrac{cos\left(\alpha-\beta\right)}{cos\left(\alpha+\beta\right)}=\dfrac{cos\alpha cos\beta+sin\alpha sin\beta}{cos\alpha cos\beta-sin\alpha sin\beta}\)
\(\Leftrightarrow VT=\dfrac{cos\alpha cos\beta\left(1+\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\right)}{cos\alpha cos\beta\left(1-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\right)}\)
\(\Leftrightarrow VT=\dfrac{1+tan\alpha.tan\beta}{1-tan\alpha.tan\beta}=VP\)
\(\Rightarrow dpcm\)
b) \(VT=sin^4a+cos^4a\)
\(\Leftrightarrow VT=\left(sin^2a+cos^2a\right)^2-2sin^2acos^2a\)
\(\Leftrightarrow VT=1-\dfrac{1}{2}\left(2sinacosa\right)^2\)
\(\Leftrightarrow VT=1-\dfrac{1}{2}sin^22a\)
\(\Leftrightarrow VT=\dfrac{3}{4}+\dfrac{1}{4}-\dfrac{1}{2}sin^22a\)
\(\Leftrightarrow VT=\dfrac{3}{4}+\dfrac{1}{4}\left(1-2sin^22a\right)\)
\(\Leftrightarrow VT=\dfrac{3}{4}+\dfrac{1}{4}.cos4a=VP\)
\(\Rightarrow dpcm\)