Mỗi bài bạn chỉ nên đăng 1 LẦN thôi nhé, tránh đăng lặp gây loãng box toán.
Mỗi bài bạn chỉ nên đăng 1 LẦN thôi nhé, tránh đăng lặp gây loãng box toán.
Câu 16. Từ 1 điểm P bên ngoài đường tròn (O), kẻ các tiếp tuyến PA, PB với (O). Gọi M là trung điểm
của AP và N là giao điểm của BM với (O). Gọi N’ là điểm đối xứng với N qua M. Chứng minh tứ giác
AN’PB nội tiếp.
Cho đường tròn (O; R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai là C
a, Chứng minh tứ giác OASB nội tiếp
b, Chứng minh M A 2 = M B . M C
c, Gọi N đối xứng với C qua M. Chứng minh: C S A ^ = M B S ^
d, Chứng minh NO là tia phân giác của A N B ^
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: PQ là tiếp tuyến chung của hai đường tròn (O) và (O’).
Cho đường tròn O R; . Gọi B là điểm đối xứng của O qua điểm A bất kỳ trên O . Từ B vẽ các tiếp tuyến BM và BN với đường tròn (M, N là các tiếp điểm). Gọi H là giao điểm của OA và MN. 1) Chứng minh rằng BMN đều. 2) Tứ giác AMON là hình gì? Vì sao? 3) Tính BM và OH theo R
giúp mình với ạ
Bài 5. Cho đường tròn (O) và một điểm M nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MNP (N nằm giữa M và P) với đường tròn . Gọi E là trung điểm của NP a) Chứng minh rằng năm điểm M, A, K, O, B cùng nằm trên một đường tròn, từ đó chứng minh KM là tia phân giác của AKB b) Gọi Q là giao điểm thứ hai của đường thẳng BK với đường tròn (O).Chứng minh AQ//NP c) Gọi H là giao điểm của AB và MO. Chứng minh rằng: MH.MO= MB2 ; MH.MO= MN.MP d) Chứng minh tứ giác NHOP nội tiếp e) Gọi E là giao điểm của AB và KO, F là giao điểm của AB và NP. CMR: AB2=4 HE.HF và tứ giác KEMH nội tiếp f) Chứng minh: EN, EP là các tiếp tuyến của (O)
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: MNQP là hình thang cân.
từ điểm P ở ngoài đường tròn (O), vẽ hai tiếp tuyến PA và PB. qua B kẻ Bx song song với PA cắt đường tròn (O) tại C. gọi E là giao điểm thứ hai của PC với (O) và I là giao điểm của BE với PA
a. chứng minh tứ giác PAOB nội tiếp
b. chứng minh PA2=PE.PC
c. chứng minh IP=IA
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: MN + PQ = MP + NQ.