Đáp án D
Xét hàm số y = x 3 - 3 m x 2 - 2 x - m trên khoảng (0;1) có y ' = 3 x 2 - 6 m x - 2
Hàm số đã cho liên tục và nghịch biến trên khoảng (0;1) khi và chỉ khi y ' ≤ 0 , ∀ x ∈ 0 ; 1
Khi đó 3 x 2 - 6 m x - 2 ≤ 0 ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ 3 x 2 - 2 x ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ m a x 0 ; 1 3 x 2 - 2 x
Xét hàm số f x = 3 x 2 - 2 x trên [0;1], ta có f ' x = 3 + 2 x 2 > 0 , ∀ x ∈ 0 ; 1 suy ra f(x) là hàm số đồng biến trên [0;1].
Do đó m a x 0 ; 1 f x = f 1 = 1 . Khi đó 6 m ≥ 1 ⇔ m ≥ 1 6 .