Bài 2:
a: Xét ΔABD có AD<AB+BD(BĐT tam giác)
b: Xét ΔACD có AD<AC+CD(BĐT tam giác)
ta có: AD<AB+BD
AD<AC+CD
Do đó: AD+AD<AB+BD+AC+CD
=>2AD<AB+AC+BC
c: \(2AD< AB+AC+BC\)
=>\(AD< \dfrac{1}{2}\left(AB+AC+BC\right)\)
=>\(AD< \dfrac{1}{2}\cdot C_{ABC}\)
Bài 11:
a: ΔMDN vuông tại D
=>MN là cạnh huyền
=>MN là cạnh lớn nhất trong ΔMDN
=>MN>MD
b: Ta có: ΔMEN vuông tại E
=>MN là cạnh huyền của ΔMEN
=>MN là cạnh lớn nhất trong ΔMEN
=>MN>NE
mà MN>MD
nên MN+MN>MD+NE
=>2MN>MD+NE