Bài 4:
a: \(4x=3y\)
=>\(\dfrac{x}{3}=\dfrac{y}{4}=k\)
=>x=3k; y=4k
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
=>\(\left(3k-4k\right)^2+\left(3k+4k\right)^2=50\)
=>\(\left(-k\right)^2+\left(7k\right)^2=50\)
=>\(50k^2=50\)
=>\(k^2=1\)
TH1: k=1
=>\(x=3\cdot1=3;y=4\cdot1=4\)
TH2: k=-1
=>\(x=3\cdot\left(-1\right)=-3;y=4\cdot\left(-1\right)=-4\)
b: 3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
=>x=2k; y=3k
\(\left(x+y\right)^3-\left(x-y\right)^3=126\)
=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)
=>\(\left(5k\right)^3-\left(-k\right)^3=126\)
=>\(126k^3=126\)
=>\(k^3=1\)
=>k=1
=>\(x=2\cdot1=2;y=3\cdot1=3\)
bài 3:
a: \(\dfrac{x}{2}=\dfrac{y}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)
=>\(\dfrac{y}{15}=\dfrac{z}{10}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
mà 2x+3y-4z=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x+3y-4z}{2\cdot6+3\cdot15-4\cdot10}=\dfrac{34}{12+45-40}=2\)
=>\(x=2\cdot6=12;y=2\cdot15=30;z=2\cdot10=20\)
b: 2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(3\right)\)
5y=7z
=>\(\dfrac{y}{7}=\dfrac{z}{5}\)
=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(4\right)\)
Từ (3),(4) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{63-98+50}=\dfrac{30}{113-98}=2\)
=>\(x=2\cdot21=42;y=2\cdot14=28;z=2\cdot10=20\)