\(a,\Rightarrow\left[{}\begin{matrix}x-1=2x\\1-x=2x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x+x-2=2\left(x\ge2\right)\\x+2-x=2\left(0\le x< 2\right)\\-x+2-x=2\left(x< 0\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(x\ge2\right)\left(tm\right)\\x=0\left(0\le x< 2\right)\left(tm\right)\\x=0\left(x< 0\right)\left(ktm\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a: Ta có: \(\left|x-1\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x\left(x\ge1\right)\\x-1=-2x\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)