Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)
\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)
Pt trở thành:
\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)
\(\Leftrightarrow1-sin^2t+4sint=4\)
\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)
\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)
\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)
Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)
\(\Rightarrow k=\left\{0;1;2;3\right\}\)
\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)
\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)
Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?
Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều