Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Đức

biết m>0 tìm m để phương trình \(cos^2\left(\dfrac{\pi}{3}+mx\right)^{ }+4cos\left(\dfrac{\pi}{6}-mx\right)=4\)

có đúng 4 nghiệm phân biệt trên (0,1)

Nguyễn Việt Lâm
7 tháng 5 2023 lúc 22:49

Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)

Pt trở thành:

\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)

\(\Leftrightarrow1-sin^2t+4sint=4\)

\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)

\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)

\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)

Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)

\(\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)

\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)

 

Nguyễn Việt Lâm
7 tháng 5 2023 lúc 22:26

Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?

Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều


Các câu hỏi tương tự
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
títtt
Xem chi tiết
Nhi Hoàng
Xem chi tiết
títtt
Xem chi tiết
Yuri
Xem chi tiết
Thái Hưng Mai Thanh
Xem chi tiết