\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4>0\)
Vậy biểu thức \(x^2-4x+8\) luôn dương với mọi x
\(x^2-4x+8\\ =x^2-4x+4+4\\ =\left(x-2\right)^2+4\ge4>0\forall x\)
\(x^2-4x+8\\ =\left(x^2-2.x.2+4\right)+4\\ =\left(x-2\right)^2+4\\ \left(x-2\right)^2\ge0\Rightarrow x^2-4x+8\ge4\\ \left(đpcm\right)\)