b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔABK vuông tại A có AD là đường cao
nên \(BD\cdot BK=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BD\cdot BK\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔABK vuông tại A có AD là đường cao
nên \(BD\cdot BK=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BD\cdot BK\)
Cho tam giác ABC vuông tại A,đường cao AH .Biết BC=8cm,BH=2cm a) Tính AB,AC,AH b) Trên cạnh AC lấy điểm K (K khác A,C),gọi D là hình chiếu của A trên BK. Chứng minh rằng :BD.BK=BH.BC c) Chứng minh rằng : diện tích BHD =1/4 diện tích BKC×CoS bình phương góc ABD
Cho tam giác ABC vuông tại A, đường cao AH, biết BC=8cm, AB=4cm.
a) Giải tam giác vuông ABC
b) Tính AH,BH,HC
c) Trên cạnh AC lấy điểm K (K khác A, K khác C). Gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC= 8cm, BH = 2cm
a)Tính độ dài AB,AC,AH
b)Trên cạnh AC lấy điểm K ( K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK.C/m rằng BD.BK = BH.BC
c)C/m rằng SBHD = \(\dfrac{1}{4}\)SBKC cos2 góc ABD
Cho tam giác ABC vuông tại A, kể đường cao AH. Biết BH = 2 cm, BC = 8 cm. a)Tính AB. AC và AH b)Tính BAB c)Trên cạnh AC lấy điểm K tùy ý (K khác A và C),gọi D là hình chiếu của A lên BK. Chứng minh AB=BC.sin BDH
Cho tam giác ABC vuông tại A(AB<AC), đường cao AH.
a) Trên cạnh AC lấy điểm K(K ≠A, K≠C), gọi D là hình chiếu của A trên BK. Chứng minh rằng BD \(\times\) BK=BH\(\times\)BC
b)Biết BC= 4\(\times\)BH . Chứng minh rằng:\(s_{BHD}\)=\(\dfrac{1}{4}\)\(S_{BKC}\)\(\cos^2ABD\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 3,6cm. CH= 6,4cm. a) Tính độ dài các đoạn thẳng AB, góc ACB (góc làm tròn đến độ.) b) Trên cạnh AC lấy điểm M (M khác A; M khác C), kẻ AK vuông góc với BM tại K. Chứng minh rằng: BK.BM=BH.BC, từ đó suy ra tam giác BHK đồng dạng với tam giác BMC.
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 3,6cm. CH= 6,4cm. a) Tính độ dài các đoạn thẳng AB, góc ACB (góc làm tròn đến độ.) b) Trên cạnh AC lấy điểm M (M khác A; M khác C), kẻ AK vuông góc với BM tại K. Chứng minh rằng: BK.BM=BH.BC, từ đó suy ra tam giác BHK đồng dạng với tam giác BMC.
Cho tam giác ABC vuông tại A, AB<AC, đường cao AH.
a) Giả sử BH = 4 cm, CH = 5 cm. Tính độ dài AB và số đo góc B (làm tròn đến độ) b) Trên cạnh AC lấy điểm D (D khác A và C). Gọi K là hình chiếu của A trên BD.
Chứng minh: BK.BD=BH.BC và tam giác BKH đồng dạng với tam giác BCD. c) Chứng minh: 4 điểm A, B, K, H cùng thuộc một đường tròn. Xác định tâm O của đường tròn đó.
d) Gọi M và N lần lượt là hình chiếu của A và B trên HK. E là giao điểm thức hai của đường thẳng AM với (O). Chứng minh BE // MN.
help mik câu C D với :(
Cho tam giác ABC vuông tại A,đường cao AH.Biết BC = 8cm,BH = 2cm .
a,Tính độ dài AB,AC,AH.
b,Trên AC lấy điểm K(K≠≠ A,C),gọi D là hình chiếu của A trên BK.CM: BD.BK=BH.BC
c,CM : SBHD=1/4.SBKC .cos2ABD
Mk chỉ cần lời giải phần c thoy nha!!!
Bn nào lm nhanh mk tick cho!!!!!!!!!!