a: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB*DC=DA*DH
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
a: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB*DC=DA*DH
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
Cho tam giác nhọn ABC có đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Chứng minh AD*HD=DB*CD
Tam giác AEF đồng dạng tam giác ABC
AI*HD=IH*AD
Cho tam giác ABC nhọn , đường cao AD,BE ,CF cắt nhau tại H .CRM:
a)AE.AC=AF.AB
b)Tam giác AEF đồng dạng tam giác DEC.
c)DH.DA=DE.DF.
Cho tam giác ABC có 3 góc nhọn, đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a, DB.DC = DH.DA
b, tam giác AEF đồng dạng tam giác ABC
c, \(\frac{HD}{AD}\)+ \(\frac{HE}{BE}\)+ \(\frac{HF}{CF}\)= 1
d, H là giao điểm các đường phân giác của tam giác DEF
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tam giác ABE ~ tam giác ACF b) Chứng minh DB.DC=DH.DA
Cho tam giác ABC có ba đường cao AD, BE và CF cắt nhau tại H. a, Chứng minh: AExAC = AF×AB b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC ;tam giác BFD đồng dạng với tam giác BCA c, Chứng minh tam giác CFD đồng dạng tam giác CBH
Cho tam giác ABC nhọn có các đường cao AD,BE,CF đồng quy tại H.Chứng minh
a) tam giác AEF đồng dạng tam giác ABC,tam giác AFE đồng dạng tam giác DBF
b)\(\frac{S_{ÀEF}}{AH^2}=\frac{S_{BDF}}{BH^2}=\frac{S_{CDE}}{CH^2}\)
cho tam giác ABC nhọn,các đường cao AD,BE,CF cắt nhau tại Ha.Chứng minh:tam giác AEB đồng dạng tam giác AFCb.Chứng minh:tam giác AEF đồng dạng tam giác ABCc.cho thêm điều kiện 4AD.HD=BC.CHứng minh tam giác ABC cân