Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Trang

Bài 3:
a) cho a≥1,b≥1. Chứng minh: a\(\sqrt{b-1}\)+b\(\sqrt{a-1}\) ≤ ab
b) ) Cho 4 số thực dương a, b, c, d. Chứng minh rằng: \(\sqrt{ac}+\sqrt{bd}\)\(\sqrt{\left(a+b\right)\left(c+d\right)}\)

Lê Thị Thục Hiền
22 tháng 9 2021 lúc 22:12

a)Áp dụng AM-GM có:

\(a\sqrt{b-1}\le a.\dfrac{b-1+1}{2}=\dfrac{ab}{2}\)

\(b\sqrt{a-1}\le b.\dfrac{a-1+1}{2}=\dfrac{ab}{2}\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\dfrac{ab}{2}+\dfrac{ab}{2}\)

\(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Dấu "=" xảy ra khi a=b=2

b)Áp dụng bđt bunhiacopxki có:

\(\left(\sqrt{ac}+\sqrt{bd}\right)^2=\left(\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{d}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]=\left(a+b\right)\left(c+d\right)\)

\(\Rightarrow\sqrt{ac}+\sqrt{bd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{a}}{\sqrt{c}}=\dfrac{\sqrt{b}}{\sqrt{d}}\Leftrightarrow ad=bc\)

Nguyễn Hoàng Minh
22 tháng 9 2021 lúc 22:11

\(b,\) Áp dụng BĐT Bunhiacopski:

\(\left(a+b\right)\left(c+d\right)=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]\\ \ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)

Dấu \("="\Leftrightarrow ad=bc\)

 


Các câu hỏi tương tự
binhbinhthd
Xem chi tiết
Rhider
Xem chi tiết
Kamka Lanka
Xem chi tiết
Thu Nguyễn
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Lê Song Phương
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Lực Nguyễn hữu
Xem chi tiết