Bài 2. Cho tam giác ABC nhọn có AB > AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA .
a) Chứng minh: tam giác AMB = tam giác DMCDMC và AB // CD b) Kẻ AH vuông góc BC tại H; DK vuông góc BC tại K. Chứng minh: AH//DK và AH = DK.
c) Trên tia đối của tia KD lấy điểm E sao cho KE = KD.Chứng minh: ME = MA.
d)Chứng minh: AE//BC. ( vẽ hình , ghi giả thuyết , kết luận cho mình nhakk ()
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD