\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\) (do \(a+b+c=0\))
\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1^2-2.\dfrac{1}{4}=\dfrac{1}{2}\)