\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)
\(b,\left(3x-2y\right)^2=9x^2-12xy+4y^2\)
\(c,\left(2x-\dfrac{1}{2}\right)^3=8x^3-3.4x^2.\dfrac{1}{2}+3.2x.\dfrac{1}{4}-\dfrac{1}{8}=8x^3-6x^2+\dfrac{3}{2}x-\dfrac{1}{8}\)
\(d,\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)=\dfrac{x^2}{4}-y^2\)
\(2;a,x^4+4x^2+4\)
\(=\left(x^2+2\right)^2\)
\(b,4a^2b^2-c^2d^2\)
\(=\left(2ab\right)^2-\left(cd\right)^2\)
\(=\left(2ab-cd\right)\left(2ab+cd\right)\)