a) \(A\left(x\right)=2x^3+2-3x^2+1=2x^3-3x^2+3\)
Có bậc là 3
\(B\left(x\right)=2x^2+3x^3-x-6=3x^3+2x^2-x-6\)
Có bậc 3
b) Thay \(x=2\) vào A(x) ta được:
\(2\cdot2^3-3\cdot2^2+3=2\cdot8-3\cdot4+3=16-12+3=7\)
Vậy giá trị của A(x) tại x=2 là 7
c) \(A\left(x\right)+B\left(x\right)\)
\(=2x^3-3x^2+3+3x^3+2x^2-x-6\)
\(=5x^3-x^2-x-3\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3-3x^2+3\right)-\left(2x^2+3x^3-x-6\right)\)
\(=2x^3-3x^2+3-2x^2-3x^3+x+6\)
\(=-x^3-5x^2+x+9\)
a: A(x)=2x^3-3x^2+3
Bậc là 3
B(x)=3x^3+2x^2-x-6
Bậc là 3
b: A(2)=2*2^3-3*2^2+3=7
c; A(x)+B(x)
=2x^3-3x^2+3+3x^3+2x^2-x-6
=5x^3-x^2-x-3
A(x)-B(x)
=2x^3-3x^2+3-3x^3-2x^2+x+6
=-x^3-5x^2+x+9
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`A(x)=2x^3 +2 - 3x^2 + 1`
Bậc của đa thức: `3`
`B(x) = 2x^2 + 3x^3 - x - 6`
Bậc của đa thức: `3`
`b)`
Thay `x=2` vào đa thức `A(x)`
`2*2^3 +2 - 3*2^2 + 1`
`= 2^4 + 2 - 12 + 1`
`= 16 + 2 - 12 + 1`
`= 16 - 10 + 1`
`= 6 + 1`
`= 7`
Vậy, giá trị của `A(x)` tại `x=2` là `A(2)=7`
`c)`
`A(x)+B(x)`
`= (2x^3 +2 - 3x^2 + 1)+(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1+2x^2 + 3x^3 - x - 6`
`= (2x^3 + 3x^3) + (-3x^2 + 2x^2) - x + (2+1-6)`
`= 5x^3 - x^2 - x - 3`
`A(x) - B(x)`
`=(2x^3 +2 - 3x^2 + 1)-(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1-2x^2 - 3x^3 + x + 6`
`= (2x^3 - 3x^3) + (-3x^2 - 2x^2) + x + (2 + 1 + 6)`
`= -x^3 - 5x^2 + x + 9`
`a,`
Đa thức `A(x)` bậc `3`
Đa thức `B(x)` bậc `3`
`b,`
`A(2)=2.2^3+2-3.2^2+1=7`
`c,`
`-` `A(x)+B(x)`
`A(x)+B(x)=(2x^3+2-3x^2+1)+(2x^2+3x^3-x-6)=(2x^3+3x^3)+(-3x^2+2x^2)-x+(2+1-6)=5x^3-x^2-x-3`
`-` `A(x)-B(x)`
`A(x)+B(x)=(2x^3+2-3x^2+1)-(2x^2+3x^3-x-6)=(2x^3-3x^3)+(-3x^2-2x^2)+x+ (2+1+6)=-x^3-5x^2+x-9`