\(\dfrac{4}{x+3}+\dfrac{x+7}{x^2-9}\)
\(=\dfrac{4\left(x-3\right)+x+7}{x^2-9}\)
\(=\dfrac{4x-12+x+7}{x^2-9}\)
\(=\dfrac{5x-5}{x^2-9}\)
Bài 1:
\(a,\left(x+4\right)\left(x+3\right)-7x=x^2+4x+3x+12-7x=x^2+12\\
b,\left(x+4\right)^2+x-16=x^2+8x+16+x-16=x^2+9x\\
c,\dfrac{4}{x+3}+\dfrac{x+7}{x^2-9}=\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+7}{\left(x+3\right)\left(x-3\right)}=\dfrac{4x-12+x+7}{\left(x+3\right)\left(x-3\right)}=\dfrac{5x-5}{\left(x+3\right)\left(x-3\right)}\)
Bài 2:
\(7a-7b=7\left(a-b\right)\\
b,x^2-8x+16=\left(x-4\right)^2\\
c,ax-ay+3x-3y=a\left(x-y\right)+3\left(x-y\right)=\left(a+3\right)\left(x-y\right)\\
d,x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)