a: Xét ΔAEC và ΔAFB có
AE=AF
góc EAC chung
AC=AB
=>ΔAEC=ΔAFB
b: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
góc EBC=góc FCB
BC chung
=>ΔEBC=ΔFCB
a: Xét ΔAEC và ΔAFB có
AE=AF
góc EAC chung
AC=AB
=>ΔAEC=ΔAFB
b: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
góc EBC=góc FCB
BC chung
=>ΔEBC=ΔFCB
cho tam giác abc có ab = 10cm ac = 15cm trên đường ab lấy điểm e sao cho ae = 6cm trên ac lấy điểm d sao cho ad= 4cm Chứng minh tam giác adb đồng dạng tam giác aec
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Mọi người giúp em với.
1. Cho tam giác ABC cân tại A và có góc A bằng 50°.
a) Tính góc B và góc C.
b) Lấy D thuộc AB, E thuộc AC sao cho AD bằng AE. Chứng minh DE song song BC.
2.Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD bằng AE.
a) Chứng minh DB bằng EC.
b) Gọi O là giao điểm của BD và EC. Chứng minh tam giác OBC và tam giác ODE là tam giác CÂN.
c) Chứng minh DE song song BC.
3. Cho tam giác ABC vuông tại A có góc B bằng 60°. Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE bằng CA ( CE,CA nằm cùng phía đối BC ). Trên tia đối BC lấy F sao cho BF bằng BA. Chứng minh :
a) Tam giác ACE đều.
b) A,E,F thẳng hàng ( Góc AEF bằng 180° ).
Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi
1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F
Chứng minh tam giác ADE đồng dạng với tam giác BFE
2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK
Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC
3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm
So sánh AE/AC;AF/AB
4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I
Chứng minh rằng a,IA.BH = IH.BA
b,Tam giác ABC đồng dạng với tam giác HBA
5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC
Tính độ dài OC;CD
6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm
Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?
7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F
Chứng minh tam giác ADF đồng dạng với tam giác EDC
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
B19
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
cho tam giác ABC cân tại A. Trên cạnh AB,AC lấy E,F sao cho AE=CF. I là trung điểm của AF, EI giao Ac tại D. Chứng minh AECF là hình bình hành
Cho tam giác abc cân tại a ab=ac=20cm bc=24cm trên cạnh ab lấy điểm e sao cho ae=af=16cm trên cạnh ac lấy điểm f sao cho ae=à=16cm
a,CM ef song song với bc
b,tính độ dài ei
c, kẻ đường cao ah,bk cắt nhau tại i CM tam giác hbi đồng dạng với tam giác hac
d, tính độ dài ih,bi
Cho tam giác ABC. Trên AB, AC lần lượt lấy các điểm E, F sao cho AE = AF, EF cắt trung tuyến vẽ từ đỉnh A của tam giác ABC tại I. Chứng minh: \(\frac{IE}{IF}=\frac{AC}{AB}\)