Ta có:\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3x}{4}\)
Áp dụng bất đẳng thức Cô-si ta có:
\(\dfrac{x}{4}+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{4}\cdot\dfrac{1}{x}}=1\)
Ta có: \(\dfrac{3x}{4}\ge\dfrac{3.2}{4}=\dfrac{3}{2}\)
\(\Rightarrow B=1+\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu "=" xảy ra ⇔ x=2
Vậy \(MinB=\dfrac{5}{2}\Leftrightarrow x=2\)
\(B=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=1+\dfrac{3}{2}=\dfrac{5}{2}\)(do \(x\ge2\))
\(minB=\dfrac{5}{2}\Leftrightarrow x=2\)