\(\dfrac{\sqrt{x}}{\sqrt{x}+3}=2\left(\dfrac{8\sqrt{x}-3}{14}\right)\left(x\ge0\right)\)
<=> \(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{8\sqrt{x}-3}{7}=0\)
<=> \(\dfrac{7\sqrt{x}}{7\left(\sqrt{x}+3\right)}-\dfrac{8x+21\sqrt{x}-9}{7\left(\sqrt{x}+3\right)}=0\)
<=>\(7\sqrt{x}-8x+21\sqrt{x}-9=0\)
<=>\(8x-28\sqrt{x}+9=0\) *
Sau đó tính đenta
\(\Delta=496>0\)
=> pt * có 2 nghiệm phân biệt
<=> \(\left[{}\begin{matrix}\sqrt{x1}=\dfrac{7-\sqrt{31}}{4}\\\sqrt{x2}=\dfrac{7+\sqrt{31}}{4}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x1=\dfrac{40-7\sqrt{31}}{8}\\x2=\dfrac{40+7\sqrt{31}}{8}\end{matrix}\right.\) \(\left(tm\right)\)
Vậy ...