đề bài sai thử thay a=b=c=1 vào biểu thức
\(=>1+1+1=3\ne2.3=6\)
sai lớp kìa toán lớp 1 kiểu này hả
mới học tiểu học thoy mấy cái nay xin *đầu gối*
Đề sai và bạn nhầm lớp, nhầm môn nhé
đề bài sai thử thay a=b=c=1 vào biểu thức
=>1+1+1=3≠2.3=6
đề bài sai thử thay a=b=c=1 vào biểu thức
\(=>1+1+1=3\ne2.3=6\)
sai lớp kìa toán lớp 1 kiểu này hả
mới học tiểu học thoy mấy cái nay xin *đầu gối*
Đề sai và bạn nhầm lớp, nhầm môn nhé
đề bài sai thử thay a=b=c=1 vào biểu thức
=>1+1+1=3≠2.3=6
Đọc câu sau : A B C A B C B C A A B C A A B C A B C A B C A C B A B A B A B A B A B A B ^ C A C A C A A C A C
Và so sánh : 1 + 1 x 2 với 1/1 + 1/1 x 2/2 và với 1/1/1 + 1/1/1 x 2/2/2 và cả 1/1/1/1 + 1/1/1/1 x 2/2/2/2
( Lưu ý : Dấu " / " là dấu chia ; Dấu " x " là dấu nhân )
Cho a,b,c>0 và a+b+c=3. CMR: \(a^2+b^2+c^2\ge3\)
Ta cần tìm m, n để bđt sau luôn đúng \(a^2\ge ma+n\) (1)
tương tự: \(b^2\ge mb+n;c^2\ge mc+n\)
cộng 3 bđt lại ta đc: \(a^2+b^2+c^2\ge m\left(a+b+c\right)+3n=3m+3n\)
dự đoán cực trị xảy ra tại a=b=c=1 nên \(3m+3n=\left(a^2+b^2+c^2\right)_{min}=3\)\(\Rightarrow\)\(n=1-m\)
thay n=1-m vào (1) : \(a^2\ge ma-m+1\)(2)\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\ge m\left(a-1\right)\)
đồng nhất hệ số : \(a+1=m\)\(\Leftrightarrow\)\(m=a+1=1+1=2\) (dấu "=" xảy ra tại a=1)
thay m=2 vào (2) ta có bđt cần CM: \(a^2\ge2a-1\) ( với \(0< a< 3\) )
bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\ge0\) luôn đúng
do đó: \(a^2+b^2+c^2\ge2a-1+2b-1+2c-1=2\left(a+b+c\right)-3=2.3-3=3\)
dấu "=" xảy ra khi a=b=c=1
324535 +3544365=
bạn
mẫn nhi huỳnh tham khảo nha
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/ (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c= [(-c)(-a)(-b)]/abc=-1
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8
a^2+b^2+c^2 -ab -bc -ca =0.C/m a=b=c
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
Áp dụng bất đẳng thức bu nhi a , ta có
\(\left(a+b+c\right)\left[\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
mà bạn dễ dàng chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) với abc=1
=>A(a+b+c)^2>=1
=>\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\left(ĐPCM\right)\)
đấu = xảy ra <=> a=b=c1
cho a+b+c=0 và khác 0
rút gọn: A=a^2/a^2-b^2-c^2 +b^2/b^2-c^2-a^2 +c^2/c^2-a^2-b^2
PTĐTTNT:\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-b-a\right)-c\left(b-c\right)\left(a-c\right)\)
\(=3abc+a^3-a^2b-a^2c+b^3-b^2a-b^2c+c^3-c^2b-c^2a-\left(abc-bc^2-c^2a+c^3\right)\)
\(=2abc+a^3-a^2b-a^2c+b^3-b^2c-b^2a\)
\(=\left(a^3+a^2b-a^2c\right)-\left(2a^2b+2ab^2-2abc\right)+\left(ab^2+b^3-b^2c\right)\)
\(=a^2\left(a+b-c\right)-2ab\left(a+b-c\right)+b^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)