a) S=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
2S=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2017.2019}\)
2S=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)
2S=\(1-\dfrac{1}{2019}\)
2S=\(\dfrac{2018}{2019}\)
S\(\dfrac{1009}{2019}\)
b) Gọi ƯCLN(14n+3,21n+5) là d
14n+3⋮d ⇒42n+9⋮d
21n+5⋮d ⇒42n+10⋮d
(42n+10)-(42n+9)⋮d
1⋮d ⇒ƯCLN(14n+3,21n+5)=1
Vậy \(\dfrac{14n+3}{21n+5}\) là Ps tối giản
Giải:
a) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)
\(S=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\right)\)
\(S=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\right)\)
\(S=\dfrac{1}{2}.\left(1-\dfrac{1}{2019}\right)\)
\(S=\dfrac{1}{2}.\dfrac{2018}{2019}\)
\(S=\dfrac{1009}{2019}\)
b) Gọi \(ƯCLN\left(14n+3;21n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}14n+3⋮d\\21n+5⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3.\left(14n+3\right)⋮d\\2.\left(21n+5\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+10\right)-\left(42n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy \(A=\dfrac{14n+3}{21n+5}\) là p/s tối giản.
Ko nên thức thâu đêm bạn nha!