Trước hết ta có:
\(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(b-c\right)\left(a-b\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{ab\left(a-b\right)+b^2c-a^2c+ac^2-bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)
Do đó:
\(\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2-2+2\)
\(=\left(\dfrac{a}{b-c}\right)^2+\left(\dfrac{b}{c-a}\right)^2+\left(\dfrac{c}{a-b}\right)^2+2\left(\dfrac{ab}{\left(b-c\right)\left(c-a\right)}+\dfrac{ac}{\left(a-b\right)\left(b-c\right)}+\dfrac{bc}{\left(c-a\right)\left(a-b\right)}\right)+2\)
\(=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)^2+2\ge2\) (đpcm)