\(4^{x+1}+4^0=65\)
\(4^{x+1}+1=65\)
\(4^{x+1}=65-1\)
\(4^{x+1}=64\)
\(4^{x+1}=4^3\)
=> X+1=3
x =2
Vậy x=2
\(4^{x+1}\) + \(4^0\) = 65
\(\Rightarrow\) \(4^{x+1}\) + 1 = 65
\(\Rightarrow\) \(4^{x+1}\) = 65 - 1 = 64 = \(4^3\)
\(\Rightarrow\) x + 1 = 3
\(\Rightarrow\) x = 3 - 1 = 2
Vậy x = 2 .
`4^{x+1}+4^0=65`
`=>4^{x+1}+1=65`
`=>4^{x+1}=65-1=64=4^3`
`=>x+1=3`
`=>x=2`
Vậy `x=2`
\(4^x\).\(4^1\)+1=65
\(4^x\).4=65-1
\(4^x\).4=64
\(4^x\)=64:4
\(4^x\)=16
\(4^x\)=\(4^2\)
\(\Rightarrow\)x=2
Ta có: \(4^{x+1}+4^0=65\)
\(\Leftrightarrow4^{x+1}+1=65\)
\(\Leftrightarrow4^{x+1}=64\)
\(\Leftrightarrow x+1=3\)
hay x=2
Vậy: x=2
4x+1+40=65
4x+1 =65-1
4x+1 =64
⇒4x+1 =43
⇒x+1=3
x=3-1
x=2