\(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)
\(=\left(3x+1\right)^3\)
=(3x)^3+3*(3x)^2*1+3*3x*1^2+1^3
=(3x+1)^3
Để tính giá trị của biểu thức 27x^3 + 27x^2 + 9x + 1, chúng ta thực hiện các phép tính theo thứ tự từ trái qua phải:
27x^3 + 27x^2 + 9x + 1 = (27x^3 + 27x^2) + (9x + 1) = 27x^2(x + 1) + 9x + 1
Vậy giá trị của biểu thức là 27x^2(x + 1) + 9x + 1.