\(< =>\left(\dfrac{2}{5}-3x\right)^2=\left(\pm\dfrac{3}{5}\right)^2\\ < =>\left\{{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}< =>x=-\dfrac{1}{15}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}< =>x=\dfrac{1}{3}\end{matrix}\right.\)
`(2/5 -3x)^2 = 9/25`
`@TH1:2/5-3x=3/5`
`<=>3x=2/5-3/5`
`<=>3x=(-1)/5`
`<=>x=(-1)/15`
`@TH2:2/5-3x=(-3)/5`
`<=>3x=2/5+3/5`
`<=>3x=1`
`x=1/3`
\(TH1\left(\dfrac{2}{5}-3x\right)^2=\left(\dfrac{3}{5}\right)^2\\ \dfrac{2}{5}-3x=\dfrac{3}{5}\\ 3x=\dfrac{2}{5}-\dfrac{3}{5}\\ 3x=-\dfrac{1}{5}\\ x=\dfrac{1}{5}:3=-\dfrac{1}{15}\\ TH2\left(\dfrac{2}{5}-3x\right)^2=\left(-\dfrac{3}{5}\right)^2\\ \dfrac{2}{5}-3x=\dfrac{3}{5}\\ 3x=\dfrac{2}{5}-\left(-\dfrac{3}{5}\right)\\ 3x=1\\ x=\dfrac{1}{3}\)
`(2/5 -3x)^2 = 9/25`
`(2/5 -3x)^2 = 3/5`
`=> (2/5 - 3x) =3/5`
`=>`\(\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}3x=\dfrac{2}{5}-\dfrac{3}{5}\\3x=\dfrac{2}{5}-\left(-\dfrac{3}{5}\right)\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}x=-\dfrac{1}{5}:3\\x=1:3\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy...
(2/5 - 3x)2 = (3/5)2
=> 2/5 - 3x = \(\pm\) 3/5
TH1: 2/5 - 3x = 3/5
3x = 2/5 - 3/5
3x = -1/5
x =-1/5 : 3
x = -1/5 x 1/3
x = -1/15
TH2: 2/5 - 3x = - 3/5
3x = 2/5 - (-3/5)
3x = 1
x = 1 : 3
x = 1/3
Vậy...